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l e  present  work is devoted to the der iva t ion  of the d i f f e r e n t i a l  

equations of motion of a viscous gas. It  is assumed here  that the gas, 

t o  a su f f i c i en t  degree of accuracy, may be considered an ideal. gas; t h a t  

is, st rongly compressed motions of gas are excluded f r o m  the reasoning 

and the r a t i o  of the mean f r e e  path of a molecule to a cha rac t e r i s t i c  

dimension is  small i n  comparison to unity, t h a t  is, motions of 

extremely rarified gases a re  excluded. 

It is assumed, moreover, t h a t  to a s u f f i c i e n t l y  accurate degree the 

gas notion to be considered s a t i s f i e s  the l a w  of uniform d i s t r ibu t ion  of 

i n t e r n a l  energy with respect  to  the degree of f'reedom of molecule motion, 

t h a t  is, excluded f r o m  consideration are cases of gas motion with extremely 

rap id  va r i a t ion  of hydrodynamic elements i n  space and t i m e .  
I 

The r egu la r i ty  of the macroscopic motion of a real gas is connected 

t o  the randomness of the  microscopic motion s ince the macroscopic motion 

results from the  microscopic motion of an enormous number of molecules. 

From the  t r u t h  (authent ic i ty)  of these test data it follow8 t h a t  a f i n i t e  

number of Faadom microscopic motions is so large t h a t  the macroscopic 

motion can be formulated by means of the same s t a t i s t i c a l  l a w s  which we 

would have i n  the case t h a t  the number of microscopic motions were 

, 

i n f i n i t e l y  large. 
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!Ihus instead of a r e a l  d i sc re t e  gas with a f i n i t e  nuniber of f i n i t e  

molecules, t h i s  permits the consideration of a gas "limited" i n  the form 

of a continuous continuum of i n f i n i t e l y  small molecules. 

Such an asrangement is the approximate scheme, w i t h  which the regu- 

l a r i t y  of the macroscopic gas motion is conserved, the p o s s i b i l i t y  is 

overlooked of studying the viscous nature of small f luc tua t ions  connected 

with the f i n i t e  nmiber of molecules of a real gas. 

By replacing the study of a gas by the study of the motion of a 

material continuum, it i s  possible  t o  introduce the  concepts of density, 

veloci ty ,  complete i n t e r n a l  energy of a u n i t  mass of gas. 

t h a t  by the introduction i n t o  the reasoning of a gaseous continuum and the 

de f in i t i on  of basic  hydrodynamic elements, we nowhere c rea te  impediments 

t o  the  consideration of the microscopic motions of molecules and we even, 

Let us note 

conversely, assume t h e i r  existence. 

be a l l o t t e d  a l l  the physical properties of a r e a l  gas not r e l a t ed  t o  a 

f i n i t e  number of i t s  molecules. In pa r t i cu la r  it may be required t h a t  

the  mean free path of the p a r t i c l e  of the gaseous continuum be, a s  i n  a 

The introduced gaseous continuum may 

r e a l  gas, a f i n i t e  although always small quantity. 

The reproduced below derivation of the equations of motion of a 

viscous gas shows t h a t  the usual ly  applied [ 1,2,3,4 1 equations a r e  

obtained from insu f f i c i en t ly  complete physical  representations.  

Consequently a se r i e s  of terms of the same order of smallness,absent 

i n  them,are kept. 

1. Fundamental Concepts 

L e t  us denote by m the mass of gas i n  some volume. Then the  

dens i ty  p of the gas a t  a given point  M a t  a given time 6 w i l l  be 
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ca l l ed  the  l i m i t  of the r a t i o  of the mass m a t  time t t o  the 

volume P, if the l a t t e r  wbich envelops the poin t  M is contracted 

t o  t h i s  point. 

Since the mmentum of a system equals the momentum of the center  of 

i n e r t i a  of a system i n  which a l l  the mass of the system is concentrated, 

then t h e  introduced ve loc i ty  
3 
v of the gas motion i s  the ve loc i ty  of the 

center  of i n e r t i a  of an i n f i n i t e l y  small volume. 

L e t  us introduce the concept of t o t a l  energy u and i n t e r i o r  

energy E of a un i t  mass of gas. 

L e t  us consider again some volume P enclosing the point  M. Inside 

the volume 

energy, bemuse by representing the gas ideal ly ,  then a l l  the enerQy Of 

P w i l l  be found some mass of gas possessing some f i n i t e  

these molecules w i l l  be kinetic.  Let us denote it by U1. Then the 

condition t o  express the t o t a l  energy U of a u n i t  mass of gas a t  a 

given point  i n  a given moment of t i m e  t i s  the l i m i t  of the r a t i o  of 

U1 a t  t t o  a. mass of gas m a t  time t if the volume P enclosing 

M shr inks t o  t h i s  point. 

On the basis of Koenig's theorem the quant i ty  Ul nlay be divided 

i n t o  two components: the k ine t ic  energy Us of the center  of i n e r t i a  

and the k ine t i c  energy u3 of the r e l a t i v e  motion with respect  t o  the 

center  of i ne r t i a .  

The in t e rna l  energy E of u n i t  mass of gas a t  a given point  M 

a t  time t we w i l l  express by the l i m i t  of the r a t i o  of the k ine t i c  

energy F3 (a t  time t )  of the re la t ive  motion of molecules with respect  

t o  the center  of i n e r t i a  t o  the mass of gas m (a t  t i m e  t )  if 

EI, shrinks t o  the point. 

P enclosing 



If the mass, inomentum, t o t a l  and in t e rna l  energy of the gas included 
-> 

i n  the  element of volune dP be denoted by dm, dK, aU* and @, then 

from the def in i t ions  introduced it follow immediately 

The quant i ty  E of i n t e rna l  energy of a u n i t  mass of gas which i s  

introduced above may evidently be divided i n t o  two components. 

The f i r s t  of these El w i l l  correspond t o  t h a t  p a r t  of the  k ine t ic  

energy of the molecular motion which is r e l a t e d  t o  i ts  successive motions, 

The second of these E, w i l l  correspond t o  t h a t  p a r t  of the h ine t i c  

energy of the molecular motion which is a r e s u l t  of i t s  ro t a to ry  and 

o s c i l l a t o r y  motion. 

The quantity, proportioned t o  El, i n  the k ine t ic  theory of gases 

is  the temperature. The proportionali ty f a c t o r  evidently depends on the  

u n i t s  i n  which temperature is measured and becomes completely determined 

if such a un i t  is chosen. Usually temperature is measured i n  degrees 

Kelvin and is denoted by T. 

For these un i t s  of measurement def ining temperature we have 

II+, El = 3/2 kT, k = 1.37 x mg/deg. (1.2) 

where k is the so-called Boltzmann constant and md is  the  mass of a 

gas molecule. 

Since the l a w  of uniform dis t r ibu t ion  of energy by f’ree degrees 

occurs f o r  the considered gas motion, then the pa r t  E, of E is 



proportional to T, 

Theref ore 

where 

for constant volume. 

cv is a new proportionality coefficient called the specific heat 

Transfer Occurrences and Some Conclusions 

Let us give an elementary treatment of some physical occurrences 

belonging to the so-called transfer occurrences. 

1. Density of self-diffusion: Let us consider some fixed area 
3 Let us A B C D 

denote by X the molecular mean free path and by c the mean value of 

the velocity of the thermal molecular motion and assume that the gas 

temperature is constant. 

of the area AS with normal n in a macroscopic gas. 

Let us simplify the representation of the molecular motion and 

consider that half the molecules has a velocity in the normal direction 
3 n and half in the opposite direction, 

Moreover, let us consider that all the molecules traverse the path 

X without collision in the time 

At = ?r 
9 

Then half the mass of the gas layer of thickness X abovb, t& a.,pba AS 

go down and half the mss of the gas layer of thickness X, below AS, go 

abwe . 
If X is small in comparison with the characteristic dimension 

of the occurrence 1,  then, with sufficient accuracy, we may write 



where Am, is  the mass of a gas layer of thickness A s i t ua t ed  above 

the  area AS, .cl;nl is the mass of a gas layer  of thickness X lying 

below the a rea  AS, p 

ap/t;n" I s  the  der ivat ive i n  the n di rec t ion  of the  densi ty  p a t  some 

point  of AS. 

is  the gas density a t  some poin t  of the area,  
..3 

Evidently, then 

( 2 * 3 )  

yie lds  the mass of the gas transported a6 a consequence of the inconstancy 

of the dest iny across the element of a rea  AS i n  time At .  
a 

Let us denote by Q~~ the mass flaw across the a rea  with normal r i q  
3 

i n  the d i rec t ion  opposite t o  B connected with the inconstancy of the 

dens i ty . 

Because of the s implici ty  of the representation of the motion of 

the gas molecule, it is impossible to guarantee the correctness of the 

numerical f ac to r  i n  (2.4). Consequently, pu t  

where fl is the nondimensional numerical f a c t o r  of the order of unity.  

From (2.5) we see t h a t  with the va r i a t ion  of densi ty  i n  the macro- 

scopic quiescent gas occurs the  flow of mass across a n  a rea  immobile 

with respect  t o  the gas. 

var i a t ion  of density it is expedient t o  c a l l  the  density of self-diffusion. 

This phenomenon of mass flow because of the 



Evidently t h i s  reasoning is preserved i n  the case when the  macro- 

scopic motion of gas and area are considered moving i n  space with 

ve loc i ty  0 of the macroscopic gas motion. 
+ 

The se l f -d i f fus ion  of the 

densi ty  the mass flow Qnp i n  t h i s  case w i l l  also be given by (2.5). 

L e t  us observe t h a t  the density of s e l f d i f f u s i o n  i s  never taken 

i n t o  account i n  describing the motion of a viscous gas. 

2. Density of Eeat Conduction: Let us consider, a s  above, c e r t a i n  

f ixed elements of area hbs with normal 2 i n  the macroscopic qu ie t  gas, 

l e t  us r e t a i n  the previous notation and l e t  us consider the  question of 

the t ransport  of the i n t e r n a l  energy across the a rea  OS assuming the  

gas temperature constant. 

Downward will be transported mass 1/2hm2 with i n t e r n a l  energy m2, 
upward w i l l  t e  transported the mass 

Evidently 

1/%l with i n t e r n a l  energy &El. 

(2.6) 
1 1 hE2= pAm2 cv T, -1= ~ Q r n  CV T 

The quant i ty  

m = AE2’ AEl (2.7) 

gives the amount of i n t e r n a l  energy t ransported because of the inconstancy 

of the densi ty  across the area bs during time Qt. 

L e t  us denote by tW the  flow o the i n t e r n a l  energy across an 

area with normal n i n  a direct ion/  n connected with the  inconstancy - 
opposite €0 

-3 3 

of the density.  We have 

if the correctness  of the numerical f a c t o r  is not  ce r t i f i ed .  
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then put  

where f2 i s  a numerical fac tor  of the order of unity.  

I t  is evident t h a t  the reasoning f a i l s  i n  the case when the macro- 

scopic motion of the g&s and the area 

the ve loc i ty  v of the macroscopic gas notion. Formula (2.9) w i l l  

y ie la  i n  t h i s  case the flow o f  in te rnhl  energy r e l a t e a  t o  the v a r i a b i l i t y  

of  t he  density. 

AS are consiaerea moving vdth 
L 

The phenomenon of energy transport  across  ttn area moving along with 

the gas which arises from the v a r i a b i l i t y  of the ciensity, i s  cal led the  

dens i ty  of heat conduction. 

L e t  u s  note t h a t  the pnencnienon of' the densi ty  of hea t  conauction 

i s  never t&en i n t o  account i n  the aer ivat ion of the  equations of motion 

of G viscous 

3. Viscosity: Using the stme simplification of the scheme of mole- 

cular  motion, i t  i s  not  d i f f i c u l t  t o  consiuer the question of momentum 

t r a n s f e r  across an area moving Miith t he  gas f o r  those cases  of  motior, >vhen 

the macroscopic ve loc i ty  of the gas motion va r i e s  i n  space. 

The coef f ic ien ts  of v i scos i ty  pl ana p, whichqqiesr here,  cons is t  

of trie pmuucts of the veloci ty  components with respec t  t o  the coordinates 

i n  expressions fo r  momentum flo* ana a re  obtained from the formulas 

P1 = % P k  p =  f&Ac (2.10) 

where fa ma f 4  are numerical f a c t o r s  of the order  of  unity. 

dote .  The t ranspor t  phenomenon i s  not  exh&usted by the  three considered 

phenomena i f  only because the average of the considered phenomena i s  no t  
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the  usual terqerature  of heat conauction, 

Nevertheless i t  is possible to  mhKe three e s s e n t i a l  conclusions from 

consideration of these three phenomena. 

F i r s t :  the usual reasoning may not be used f o r  the components of  

the equations of motion of a viscous gas with G f l u i d  volume of  constant  

mss because i t  Iliay vary a t  the expense o f  the se1.f-diffusion of the  niass 

f loYls  o f  a rmss volume boundea by a closed surface moving with bhe gas. 

Seconci: it i s  impossible to  be l imited only t o  the consideration of  

v i s c o s i t y  and the usud. temperature of hebt conuuction f o r  the components 

of the  equations oi. motion of a viscous gas because there exist o the r  

trsrispor t phenomena. 

Third: i t  should be Kept i n  minu f o r  the components of the equations 

of  motion of G viscous gas b t  mass, momentum a d  energy are  t ransported 

across  a surface moving w i t h  the gas f o r  which the hydrodynamic elements 

vhry i n  space. 

3.  General Descripticm o i  the Laws of Variation 

L e t  us consicier the average o f  some fixea volume V bounaed by 

a surface :: b v h g  vdth ti veLocity v i n  space anu l e t  u s  assume t h a t  
-> 

solilc scalm o r  vector  .iuantity A , R i'unction oi' the coordinates &nu time, 

i s  uefined at poin ts  of the moving o'euium vvnicn f i l i s  the space. 

Let u s  a l s o  consider together d t h  u the Llu&ntity defined by 

tiis fornula  

a =  h ! ! A  dV 
v 

where aV is  ari eleaent  of the volume V . 
For a fixed volumc V , the . p a n t i t y  @ w i l l  be a. funct ion only  
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of' t i ue  t arid eviaent ly  

(3.2) 

-+ 
Let u s  admit t n a t  the var ih t ion  o f  0 a i t h  t h e  results only from 

consiccration o f  the inaepencient hction of the  fhllowing two fac tors :  

1) Insiae the volume V the quantity CD with volume ve loc i ty  B re- 

si,.l.ts at, t% expense of t h e  eff 'ect  of t h i s  f ac to r  i n  the volume UV i n  

tiine ai; sa thtit Q, unasrgoes EL v a t s t i o n  iretermineci by the  formula 

A i @ =  B dv 5t (3.3) 

2) The f ' l o ,  o f  @ &cross tne surfbce b of' tne volume V # i t h  sur- 

I'BCC aecsi ty  Gn 

trie surfact clemcnt ub I . i t n  external normal i n  time a t  the q u a -  

t i t g  6, uriaergoes cz var ia t ion  Az@ aefinea by tile fornalh 

occurs sirice because of tne e f f e c t  of  t h i s  f a c t o r  or] 

&'= GI1 UL d t  (3.4) 

Sirice both f z c t a r s  a c t  inuepenuently of eaLh other ,  then by integ- 

r;ting Al@ over  V ma AZO aver S ,  conibining the r e s u l t s  of the  

inte;r&tions clnd aiviuink t )y  u t  , we obt;in tne seconci expression f o r  

( 5 . 5 )  

(2.6) 

L e t  us ci2ri.y o u t  a l l  the consiaerations i n  the  hrb i t ra ry ,  orthogonal 

curv i l inear  coomino t e s  

x 6 i n u t c . s  by Gepenuencies not cont&inin& time ancl l e t  us choose from t i l t  

ii , qL , q9 which are r e l a t ed  t o  Cartesian co- 
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volume V bouncieci by tne  surfaces 

- 
41 = a 9 41 = ‘il ; qz = b 9 qz = 42 q3 = c 9 y:, - q j  (3.7) 

if the Lame coe f f i c i en t s  be denotea by HI, H2, and H3 then (3.6) 

is  vvritten fo r  the chosen volume i n  the following way: 

j!Tc i11ti2H3dqla+$q3 EBlH2ii3aqldq2aq3 + 
a b c  9342 a 

,:$here 

bciunc~ctries of a curvi l inear  phrhllelopiped with normals p a r a l l e l  t o  

GI, GZ, Gg denote the  su r face  uensity of the stream across the  

t u  L1, +, L~~ axes ana G,1,G,2, G-3 aenote tne sane quant i t ies  for 

tiif: o1,pozitely d i r e c  teri normal. 

Different int ing both sides of  (3.8) with respec t  t o  ql, q2, q3  

Let u s  separate  i n t o  two each of the quan t i t i e s  G1, G2, G3 
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putt ing 

G 1  = -v1A + C1 ; G2 = -v, A + Ck j CS = -V-A 3 + G3 (3.10) L 
-I  

bvhere vl, v2, v3 are the project ions of the  ve loc i ty  vector v of  

the medium on the ql, q2, q5 axes. 

The sense of the components i n  fornula (3.10) are completely clear.  

i f  tne moving meaium be aisplaced only as the orainary (not gasiform) 

uef:mnabl,e neaium anci i f  the flow of  the quant i ty  

the iscroscopic notion of tne substance across  t h e  surface S then we 

\.ill 0;il.y have the f i r s t  components i n  formula (3.10) . I n  r e a l i t y ,  be- 

cause of  the moieculw s t ruc tu re  of tne r e a l  meciium, the flow across the  

Ca is related o n l y  t o  

su r face  m a i  be r e lh t ea  no t  only t o  the macroscopic motion, but t o  the  

moieLuZar motions i n s i u e  the  s k s t a n a e  moving with ve loc i ty  v . 
c u r x c t i a n s ,  a n k h  &re denoted by C1, C2, Cs, t o  the  f irst  components are 

n E; c e uuury. L- c - 

+ 
Consequently 

These correct ions are only the flows across surfaces moving 

with the veloci ty  o f  the medium. 

Pa t t ing  (5.10) i n  (3.9) we obtain 

LI 1' 
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If we take advantage o f  the well-known formulas 

- d A = A + L & + V 2 ' a A  + v 3 &  
d t  8 H 1  &l €12 a92 H3 2Ss 

(3.13) 
d i v  v = 1 c 2 ( v 1 H 2 H 3 )  + a (v2H3H1) + a (v3H1H2)] 

ti~H$131&q1 x as3 
1 tiler, equation (3.12) can be a r i t t e n  i n  the following form : 

This equation represents  the desired record, i n  d i f i e r e n t i z l  form, of 

tdie ,enera1 la% of  va r i a t ion  of  A with the Lssumptions mace before on 

the k c t o r s  defining the var ia t ion  of (0 v,hich is r e l a t e a  to  A by (3.1). 

4. hqua t ions o f  Motion of' a nileaium 

The equations o f  motion of a nieaiurn taking acount of mass flow, 

mamenturn, and energy are deriveu very simply i d t h  the a i d  of (3.14), i f  

the laws of conservktion of mass, momentuu; anc energy are in te rpre tea  

by the lam of var ia t ion as expresseu by (3.14). 

To obtain the cont inui ty  equation, i t  i s  necessary t o  W e  the mass 

conservation l a x  ana, assuming the absence of a three aimesnsional d i s t r i -  

but ion :If sources, t o  p u t  

(4.1) @ = P i ,  A = p  , B = O j  C l = Q l  C z - C j ; c ,  - C , = Q 3  

1. hquation (5.14) may be obtained by considering a moving volume V 

bouiiciect by a surfwe =; 

scopic ve loc i ty  v of the motion of the  meciiun. 

the points o f  which are moving d t n  the macro- 
-% 

I n  t h i s  case there is obtained instead. of (3.6) 

(3. sa) 

dlere  Cn i s  the flovl of (9 across an area moving vdth the  ghs and hnv- 

hi; a norinal n . The sense o f  the quant i t ies  C1, Cz, C b  is disclosed 

siuiultccneously from i3.6a), (3.14) and by inspection. 

--r 



where 1\11 is the  mass, p i s  the  aensity, Q1, q2, Q3 are t h e  mass 

f l o w  as a conseguence of self-diffusion across  area perpendicular 

to tne coordinate axes. 

Then this equation is obtained 

To obt, .in correc t ly  the equations of motion, it i s  necessary to 

... 3 

J ~ ~ S L  K is the niomentum, v i s  velocity, F i s  the uass fome 

TI, T ~ ,  T ~ ,  

axes o r  ,,hat i s  the shme, the  pressure of the surface Sorces. 

.+ .-? .- 
are t m  nomcntuiu Ilobls across & surface perpendiculu  to the 

or 

Replncing tile bracKets i u  the l e f t  siae of (4.5) \kith the a id  of (4.2) 
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I n  pr<.ctice,  equation (4.7) i s  n o t  used i n  its vector  form, b u t  

i l l  i,:'ojGctions cm tile curvilinear coorainate a e c .  

nt.c;esa -I-;- 5 3  y ~ o j t ; c  t trle vectors 

ConseLiuently, i t  i s  
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t:i-. f ol loving  three s e x l a  eqwt ions  are o3tsined.: 
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Let us f i n d  the expression f o r  the  coe f f i c i en t s  From (4.9) 

(4.12) 

.3 -3 3 
If i , j ,k ,  a r e  orthogonal Cartesian coordinate axes and i f  the connection 

between the Cartesian and curv i l inear  coordinates is  given by t he  formulas 

Z;hm evident ly  

(4.14) 

"her e f ore 
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Equation (4.11) with the presence of (4.15) are the required equations 

desrlribing i n  d i f f e r e n t i a l  form the momentum law. 

Let us derive the energy equation: For t h i s  use the energy consewa- 

t ion  l a w .  Put 

+ +  
B = p F . v +  E cp = Ipc; A = - 1 pv2 + pE; 

2 (4.16) 

+ +  ” 3 &  + +  cl = 7 1 . V  4- tl; cz = 7 2 . V  + t 2 j  c, = T 3 . V  + t 3  

--> .3r 
IF i s  the  t o t a l  energy, E i s  the in t e rna l  energy of a u n i t  mass, pF.v where 

i s  the force  developed by the volume force F1.V: ?20?, ?&? is the  force 

developed by the surface force produced on the u n i t  element of area perpendi- 

cular  t o  the  coordinate axes, 6 i s  the  volume ve loc i ty  excluding chemical 

light e t c .  energy, 

t c  the axes. 

t,, t2, t3 is the  heat flow across an area perpendicular 

Put t ing  (4.16) i n  (3.14), 

cr 

(4.18) 
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Using equations (4.2) and (4.6) for  the sca l a r  mult ipl icat ion by + v, 

.it i s  possible t o  produce evident simplification i n  the  preceding equation. 

Thin thc:re i s  obtained 

+(E - 5 ) H 1 H S 3  1 [G a (Q,,H;2H3) + as2 a ( Q s 3 H 1 )  + a a (QG,H,)]= 

-3 s? 73 av T1 av + - -  +k.- 
E, 3% H 2  as2 H, as3 

\ q3 

+-s- + 

This is  the desired energy equation. With i t s  writing i n  expanded 

i'qrrn, have i n  view tha.t the product of t he  vector ve loc i ty  by the  coordinates 

;lust be calculated with the help of (4.10). 

I n  Cartesian coordinates x, y and z when H,=H2=H,=1 and 0, 

321 the  separate equaticns a re  essent ia l ly  s implif ied and the following 

simple equations are obtained from (4.2), (4.11) and (4.18): 
. .  

(4.20) 
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The quant i t ies  %,Ti and t, which en te r  i n  the obtained equations 

a re  defined i n  the next paragraph. 

3 .  Expressions f o r  Mass Flow, Momentum and Heat. 

With the def in i t ions  of the mass flow' q, Momentum Tik and hea t  ti 

across an area moving with the velocity ? of the  gas perpendicular t o  

the qi axes, there w i l l  be considered t h a t  these quant i t ies  must be 

l i n e a r  functions of the first derivatives of the hydrodynamic elements 

with respect  t o  the Cartesian coordinatese2 The coef f ic ien ts  of these 

l i n e a r  functions must only depend on these hydrodynamic elements, 

''10 simplify the explanation there  i s  omitted the spec i f ica t ion  t h a t  the  
f l o w  across a moving area i s  being discussed. 

"'This assumption m y  be applied, ar is ing from numerous experiments dedicated 
t o  thc study of d i f fe ren t  types of pa r t i cu la r  cases of t ransfer  phenomena 
of mass, momentum and heat  energy in  gases, r e s u l t s  of these experi-  
nLe.,:s showed tha t ,  observing cer ta in  conditions, the flow of these quan- 
t i L 5 d s  ac tua l ly  appear lihear functions of the first der ivat ives  of the 
hyczodynamic elements 
coordinates x, y, Z .  

caseous m t i o n  which i s  e a s i l y  studied with the a i d  of the  obtained 
equations, 

Actually, f o r  t h i s  assumptior, t o  be correct ,  for example, it i s  necessary 
t h a t  the kydrodynamic elements be su f f i c i en t ly  accurately assumed l i n e a r  
approximations of a distance of the order of the mean f r e e  path of a 
molecule not defined by assigning i ts  hydrodynamic elements and t h e i r  
first derivatives i n  some point  of the volume, Not having data  on the  
gas s t a t e  i n  the  volume, we formulate the  flow, it would be impossible 
even t o  s e t  the problem of finding expressions f o r  the  flows by the 
hydrodynamic elements and t h e i r  f irst  derivatives.  
of some narrowing of the class of accessible  by mch considerations 
motions of a gas, tests and kinetic theory of gases osy that.the. 
above -formulc?ted basic assumption w i l l  with su f f i c i en t  accuracy be ful- 
f i l l e d  i n  a very broad c l a s s  of gas motions which a r e  of p rac t i ca l  
i n t e re s t ,  o r  f o r  t h i s  assumption to  be cor rec t  it i s  s u f f i c i e n t  the 
bas ic  assumptions which a re  formulated i n  the present work. 

nates and then i n  general curvil inear orthogonal coordinates. 

vx, vy, vz, p and T with respect  t o  the  Cartesian 

It i s  c l ea r  that applying t h i s  assumption we narrow somewhat the c l a s s  of 

However, i n  s p i t e  

\ 

Here the  expression fo r  the or iginal  f low is  defined i n  Cartesian coordi- 
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Evidently they ma.y not depend on the projections 

ve loc i ty  v. 

temperature. 

vx, vy, an6 vz and the  

Consequently they must be functions only of the  dens i ty  and 
a 

1 

Let us consider the  desired l inear  forms f o r  Qx, Qy, and Qz. 
starting with Qx, put 

32 ?E+, $ +  3x aZ QX = A, + 8 1 ~  ax + a2x ay 

-%-identl-y with the var ia t ion  of the  d i r ec t ion  of the x-axis i n  the 

op!:eJ.:.Lte, Qx Consequently i n  the  r i g h t  s ide  of 

formula (5.1) there  must be ne i ther  terms nor va r i a t ions  of s ign with 

the var in t ton  of the x-axis t o  the opposite. 

must change i n  sign. 

Hence 

Further, Q, must not depend on the  d i r ec t ions  of the y and z axes. 

Consequently 

= c3x = dlx = elx s 0 =2x 

Theref ore  

aP aT 
Qx = "lx - ax + blx ax 

(5.3) 

(5.4) 

-- 

?Being discussed a re  flows across areas moving with the gas. The r e l a t i v e  
Velocity of the ga.s with respect  t o  the area i s  always zero. 
the values of vx, vy, and vz are not r e f l e c t e d  on the flows. 

Consequently 



Since the x, y and z 

1x 2y 32 

axes a re  completely equal then 

(5.5) a = a  = a  = D l j  b,, - - bZy = b3, = D2 

Similar ly  

Q x = D  - + D  ax 

The coef f ic ien t  D1 i s  ca l led  the coef f ic ien t  of self-diffusion of 

density,  and D2 i s  called the  coeff ic ient  of se l f -d i f fus ion  of temperature. 

For l i nea r  forms having the heat flow h, ty, t, repeating that only 

the statement of the considerations lead t o  

a T  aT aP a T  
t, = K1 + IC, -. ty = K ib + K, $ t, = K, + K, ax ax' aY (5.7) 

to t'2c cases. 
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Subs t i tu t ing  (5.8) i n  (3.14) 

o r  
9 + j aTx a T  a7 1 

a t  ax ay a2 J 
r X[L ( p 3  + pv div v - pF - - - 2 - 2 I + 

Here the square bracket, o r  the  b a s i s  of (4.4), is zero. 

Moreover , 

Theref ore 

This 

repre sen t  

3 4 3  a +  * +  i x  T x +  j x  T y + k x  T z = O  

vector equal i ty  i s  equivalent t o  three sca l a r  equa l i t i e s  

Txy = 'y., Tyz = Tzy, Tzx = Txz 

ng the well-known three-dimensional property of t he  symmetr .c 

pressure '-ensor on a continiious medium with self -diffusion, 

Keeping t h i s  i n  mind and corresponding t o  the  general considerations,  

we obtain 

(5.13) 
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The quant i t ies  A s ,  as the other coef f ic ien ts  i n  (5.13), do not  

depend on the values of the derivatives of the hydrodynamic elements 

with respect  t o  the coordinates. 

they assurne i n  a gas with constant hydrodynamic elements 

They may be found by those values which 

A k = - P ,  A a = O ,  i # k  (5.34) 

where p 

which, f o r  an idea l  gas, i s  determined by Klappenrod's equation 

is  the pressure i n  a gas with constant hydrodynamic elements 

p = RpT (5.15) 

Moreover, since the values of Tik do not vary with v m i a t i o n  of 

dxidl di rec t ion  ana back, and the derivatives of p and T with respect  

t o  the coordinates f o r  t h i s  same transformation change s ign conversely, 

then 

I!?.-tainly, according t o  (5.12) it i s  evident t h a t  

(5.17) 

Consec - -en t ly  the Ti , iL  (coqonents  of the  pressure tensor) infli-ence 

by 1inea.r .:.'i:nctiolls only the conponents of the deformation veloci-fy 

tensor. A s  is known [ 5 ] ,  for  t h i s  the following equa l i t i e s  are s u f f i c i e n t  

-7hei-e 

p and the temperature T. !he quantity p, as i s  known, is c a l l e d  the 

pl and p are  ce r t a in  functions, general ly  speaking, of the densi ty  
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coef f ic ien t  of v i scos i ty  and the  quantity 

se c ond v i  sc os i t y  

p1 - t he  coe f f i c i en t  of 

-4 
If, i n  the reasoning these tensors are introduced: pressure T, 

+. -> 
deformation ve loc i ty  I1 and uni ty  I, then all t he  preceding equa l i t i e s  

Un5.%e i n t o  one: 

+ a +  ++ T = ( -  p + p, div  v) I + 2~11 (5.19) 

which i s  always convenient f o r  transformation t o  any orthogonal curvi-  

l i n e a r  coordina.tes. 

orih9gona.l coordinates we obtain 

Transforming ( 5 . 6 )  and (5.7) t o  curv i l inear  

Moreover, transforming (5.19) t o  curv i l inear  coordinates executing 

the  usual  calculat ions [ 5 ] ,  we obtain the last of the  des i red  formulas: 

The expressions obtained f o r  mass 

six coeff ic ients :  D,, D2, K,, KE, p,, 

flow, momentum and hea t  contain 

6 ,  Expressions f o r  the coefficients pl, D,, D2, K,, K2- 

To es tab l i sh  expressions f o r  the coef f ic ien ts  pl, D,, D2, K, and K2 

d.imensiona1 theory i s  used. 

If  cv the coeff ic ient  of specific hea t  f o r  constant volume is  

introduced i n t o  the  rea.soning, expressed i n  mechanical no t  heat uni t s ,  
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then there will be the following relation between the dimensions: 

Consequently, we may put 

(6.2) P e p  K, = wvP2 4 9  
= ap, D, = It a,, D, = a2, K, = - 

P P 

where 

parameters defining the state of the gas at equilibrium because the formulas 

for the flows with these same coefficients prove applicable for the whole 

considered gas states including those which are as close as one pleases to 

a ,  a,, u2, p, and B2, are dimensionless functions of dimensionless 

the cyuilibrim state. 

The equilibrium state of the given ideal gas is completely defined by 

giving its density p and its temperature T. Out of these qualities it 

I s  irapossible to establish one dimensionless combination. 

f o r  an ideal gas the quantities 

depending on the type of gas and consequently, the coefficients 

D,, K, and K2 

Consequently, 

will be constants 

pl, D,, 

a, a,, u2, f3, and p, 

may be considered known with the accuracy of the constants 

a ,  “1, a2, 8, and /32 if the coefficient of viscosity p is known or the 

coefficient of specific heat for constant volume cv is constant fo r  an 

ideal gas. 

7. The Coefficients a, %, a2, p, and p2. 

Kinetic theory of gases permits the expectation that the numerical 

coefficients 

unity. 

sponding way from the set-up tests. 

a, al, a2, p1 and p2 will be quantities of the order of 

Generally speaking, these quantities must be found in a corre- 

In the present work we do not dispose of all these coefficients 

by t e s t  values but nonetheless relying on some test results and on 
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considerations of k ine t ic  theory of gases we give the numerical value of 

these coef f ic ien ts  of a monatomic gas. 

F i r s t  of a l l  from kine t ic  gas theory it i s  w e l l  known t h a t  f o r  a l l  

:nona.tomic gases [63 
2 a =  0 -  

3 (7.1) 

Moreover, from tests on self-diffusion of gases [7] it has been 

establ ished t h a t  f o r  a l l  monatomic gases the  coef f ic ien t  ( t o  the l i m i t s  

of t e s t  a.ccuracy) i s  the  same 

a1 = 1.30 (7.2) 

which i s  close enough t o  the theoret ical  value of t h i s  coef f ic ien t  

obtained f o r  d i f f e ren t  molecular model. 

t o  e s t ab l i sh  a t  once the value of 

Having al, it i s  not d i f f i c u l t  

pl. 
By the sane sense of the coeff ic ient  D, it may be confirmed t h a t  

f o r  consta.nt temperature T and variable d.ensity p across an eleinent 

of area dS with normal -% and time d t  because of the  density of 

self-diffusion the mass transport  w i l l  be Am, yielding the  formula 

Am = D, $ a dS d t  
on 

This mass possesses the hea t  energy Aq, where 

(7.3) 

(7.4) 

This heat  energy i s  the  heat  energy passed across our area i n  t i m e  a t  

a s  a consequence of the density of heat  conduction. Therefore, 

Equa.ting (7.11) and (7.5),  we obta.in %= p,. Therefore for 

(7.5) 

monatomic gases 
P, = 1.30 (7.6) 
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Moreover turning t o  the establishment of hea t  t r ans fe r  across  a 

plane gas layer  enclosed between two walls i n  a distance A2 f o r  differ- 

ence i n  wa.11 temperatures AT. If heat flow be denoted by q, then 

from experimental data it i s  easy t o  f i n d  the value of f determined by 

thc formdla 

4 f =  
AT/A i 

The average t e s t  value of t h i s  quantity f o r  rz monatomic gas [SI 

equals 2.51. On the other hand, i t  w i l l  be proved below (Sections 9 ,  10) 

t h a t  

f = P, - p, (7.8) 

Therefore, f o r  monatomic gases 

Let us now f i n d  a,. 

L e t  us consider the hea t  t ransfer  i n  a s t i l l  gas of constant 

densi ty  and varia.ble temperature. We denote by 4 t h e  amount of 
-3 heat  energy passing across an element of area dS with normal n 

i n  the  time dt. Evidently 

The quant i ty  Aq consis ts  of two Components: 4 1  and m2. 
The f i r s t  component, Aq,, represents the  hea t  energy flowing 

across an element of area taking into account only the va r i a t ion  of 

temperature, neglecting the hea t  of se l f -d i f fus ion ,  

This quant i ty  may be calculated by means of the theoretica.1 formula 

a r  
Aql = f*p CV - dS d t  (7.11) 

an 

As a bas is  f o r  ce r t a in  applications of t h i s  formula t o  monatomic gases 

t h i s  circumstance serves: t h a t  f o r  d i f f e r e n t  molecular models of 
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monatomic gases there  i s  always obtained f o r  the numerical coe f f i c i en t  

I* an approximate value [g]. 

cules  considered theoret ical ly ,  

Namely, f o r  a l l  models of monatomic mole- . .  
i s  included between the  l i m i t s  2.50-2.52. 

Consequently we use 

(7.12) 

???e second component Aq, represents the amount of heat  energy t rans-  

ported by the heat  of self-diffusion of mass flow. If Am denotes the  

mass penetrating an element of area as a consequence of the  hea t  of 

self -diffusion, then 

This mass possesses the heat  energy Aq2, where 

(7.13) 

(7.14) 

Equa.ting the two expressions obtained f o r  Aq 

Theref ore, 
a2 = 1.30 (7.16) 

Corresponding to the  preliminary expectations, a l l  the  coef f ic ien ts  

al, a2, 3,, !3z and a are terms of the  order of unity. 

Remarks: The r e l a t i v e  magnitude of the d i f f e ren t  terms i n  the 

equations of motion under different  conditions w i l l  be d i f fe ren t .  It 

is  possible  t o  specify such conditions of gas motion when the fun&.- 

nientsl values w i l l  have self-diffusion terms; it is  possible t o  specify 

such conditions of motion when the fundamental value has only terms 

r e l a t e d  t o  the pressure tensor, etc. Consequently, it is  impossible 

t o  speak of the r e l a t i v e  magnitude of d i f f e ren t  terms i n  the  motion 

equations not i so l a t ed  from a def in i te  class of motions. 
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From the p rac t i ca l  point  of view an important class of motions 

i s  t h a t  motion when a l l  the hydrodynamic elements (ve loc i ty  v, densi ty  

and temperature T) vary from magnitude t o  magnitude by the  order of t h e i r  

distance from the order of the same length. 

p 

To such motions belongs, f o r  example, motion i n  the boundary layer 

a t  high speeds. I n  these motions a t  points  separated by a distance of 

the order of the boundary-layer thickness 6, generally speaking, the 

hydrodynamic elements d i f f e r  by the magnitude of the  order of these 

same hydrodynamic elements. 

If t h a t  motion with one charac te r i s t ic  distance f o r  a l l  hydrodynamic 

elements i s  kept i n  mind then the standard transformation t o  dimension- 

less quant i t ies  leads a t  once t o  the conclusion tha t ,  i n  these notions, 

nll self-diffusion,  hea t  conduction and v i scos i ty  terms have the  same 

relat-ive magnitude if o n l y  the  constants a, ai, a=, PI, and p2 have one 

order. 

Since, according t o  k ine t ic  gas theory, a l l  these constants are of 

'che order of unity, then it follows t h a t  f o r  the motion considered if 

only one term re l a t ed  t o  transport  phenomena is  reta.ined i n  the equations, 

then all the  other terms r e l a t ed  t o  these phenomena must be retained. 

Moreover, t h i s  means t h a t  for  the motion of the  considered c l a s s  

e i t h e r  completely exclusive equations or  the  equations of motion of an 

idea l  compressible f l u i d  may be used. 

8. Boundary Conditions f o r  the System of Di f f e ren t i a l  Equations 

of Gas Motion 

To in tegra te  the system of d i f f e ren t i a l  equations of gas motion 

which i s  obtained, boundary conditions a re  necessary which occur on the  
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gas streamlines and boundary conditions a t  

the domain occupied by the  gas extends t o  

The question of the  boundary conditions a t  i n f i n i t y  a r e  always 

ea , s i ly  solved. Evidently these conditions must include the density, 

teniperature, and ve loc i ty  components assigned a t  in f in i ty .  

The question of the boundary conditions on the surface of a stream- 

l ined  r i g i d  body i s  more complex t o  solve. 

F i r s t  of a l l ,  it i s  completely c l ea r  t h a t  through the  surface of a 

streamlined r i g i d  body the mass of gas does not penetrate.  
-> 

I f  the normal t o  the surface S of a r i g i d  body be denoted by n 

and it i s  assumed t h a t  the body streamlines do not  move i n  space then 

t h i s  physical  f ac t ,  evidently, i s  described i n  the  following way: 

I n  order t o  obtain the boundcay conditions on the  surface of the 

streamlined r i g i d  body, we assume tha t  immediately on the surface the 

gas moves e i the r  very slowly o r  at restm2 

Since the order of the obtained system a t  uni ty  i s  higher than the order 
of t h a t  system which occurs f o r  incomplete consideration of t ransfer  
phenomena, then the  old boundary conditions do not correspond t o  the  
setup of the  problem if only because its number doesn't correspond t o  
the  new order of the system of the motion equations. 

It i s  possible t o  reduce cer ta in  physical occurrences on the bas i s  of 
t h i s  assumption. 
assumed f o r  a gas of micro-motion close t o  the  surface, the gas w i l l  
be found i n  the conditions, a's close t o  the streaming conditions across  
a very s l i g h t l y  porous medium. 

Well-known a re  the  enormous coeff ic ients  of t he  res i s tance  of gas motion 
across d i f f e ren t  kinds of s l i gh t ly  l a t t i c e d  and porous media and a l s o  
known the extremely inconsiderable input of a gas f o r  motion through 
a l a t t i c e d  and porolls medium which f o r  s u f f i c i e n t  smallness of pores 
i s  p rac t i ca l ly  zero. 

2 

Visually the smooth streamlined surface may be 
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Neglecting sml l  ve loc i t i e s  of the gas motion d i rec ted  tangent t o  
-> 3 

the surface 

surface 

S, and denoting by 2,, and Z2 t he  vectors  tangent t o  the  

S, we obtain two boundary conditions 

I n  thc gas a t  r e s t  we hove a s t a t i c  pressure d is t r ibu t ion .  

:i;u,ntly, with the known approximztion, it i s  possible  t o  assume 

Conse- 

where 

surf ace. 

Fn i s  the project ion of the mass force on the noma1 t o  the  

The boundary condition (8.2) is confirmed wel l  enough by experiment. 

Boundary condition ( 8.3) must be ve r i f i ed  by t e s t s  and a t  present  may 

bc comidered 2s a pro5able hypothesis. 

9. Example of the In tegmt ion  of the System of Equations of 
Gas Motion 

Let us consider the uniform simple problem of hea t  t r ans fe r  through 

a gas  l aye r  between two p a r a l l e l  planes f o r  the conditions t h a t  t he  

difference I n  the temperature of the w a l l s  i s  s m a l l  and there  i s  no 

ixiss force.  

Let the two p a r a l l e l  planes be x =-2  and x = + 2 .  L e t  the tempera- 

tu re  of these planes equal, respectively, T, and T,. 

the planes be i n  such a quantity t h a t  it would have dens i ty  

were constant throughout the space occupied by the  gas. 

the quant i ty  

L e t  the gas between 

po i f  it 

Finally,  l e t  

be so small t h a t  i t s  squares may 3e neglected i n  comparison t o  oner 
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The considered problem corresponds to the following transformation 

of the system of equations of gas motion: 

ap dT '\ 
dx d x d x  -+D2 

f 4 dv ) dv i- RpT + - 3 %)LE 

For simplicity, the gas is considered nonatomic here; this does not 

affect the generality. 

have the following conditions: 

To determine the constants of integration, we 

pv = D1 dP - + + 2 -  dT, T=T1, T -  dP + p - =  dT 0 f o r  x = - 2  
dx dx ax dx 

+t 

(9.4) 

At first glafice it may appear that we have seven conditions to 

define six constants of integration. 

However, consideration of' the  first of equations (9.2) shovs at 

once that the first of conditions (9.3) and (9.4) axe not independent 

and follow from each other by virtue of this differential equation. 

Because the quantity E* is assumed small, essentially (9.2) and 

conditions (9.3) and (9 .5)  are linearized. Put 

(9.6) p = Po + p' ,  T = 1 (T$TJ + T* = T ~  + T', v = v' 
2 

Di = Di(0) + Dit, Ki = Ki'O) + Ki', p = po + p'  

where the primed quantities are small. 
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Then t o  determine p', v '  and T' we obtain the  following system 

of equations: 

R = cp - c,, 

Moreover, we a l so  have the following system 

;3T' 
- 0 f o r x =  - 2  T2-T1 dP' T I = - -  

) T o - - - + p o - -  ax dx 
2 

Integrat ing the 

account the f i r s t  of 

(9.7) 

(9.9) 

f i rs t  and third of equa.tions (9.7) and taking i n t o -  

conditions (". 9 )  we obtain 

where ApocVT0 i s  the constant of integration. 

(4 .2 )  j 

+ AI-locvTo (9.10) 

Because, by v i r t u e  of 

U 



... c 

where 

. .  

Putting (9.12) i n t o  the second of equations (9,7),  

I n  t h i s  equation 

where (Po = "& To) (9.14) 

Equation (9.13) i s  e a s i l y  integrated. After in t eg ra t ion  we obtain 

v 1  = UA + BleXp+ B p m X / '  

where B, and B, n r e  integrat ion constants, 

(9.15) 

Vith the aid of (9.15) it i s  easy t o  f i n d  p t  and T' from (9.12). 

Xaking the  calculat ions,  we obtain 

(9.16) 
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where C, and C, are  integrat ion constants. 

The constants of integrat ion are .A, B,, B2, C,, C2 a re  

determined from the remaining unused conditions, thus 

22 

From 

f l o w  t x  

Applying 

we obtain 

these formulas it i s  not d i f f i c u l t  t o  f i n d  now the heat  

across any element of area perpendicular t o  the  x axis. 

lie l inear ized  formula (5.7) and using the  formulas (6.2) 

(9.17) 

From formulas (9.17) and (3.18) ce r t a in  conclusions my be made. 

F i r s t ,  if the value V I  can be found from experiment, then from 

the  first of the formulas (9.17) we have a method of determining 

(a2-a,) - 
Second, from formula (9.18) there immediately results tha t  the 

va r i a t ion  of heat  flow tx permits the determination of (P , -B, ) .  

Finally,  third,  from formulas (6.23) there  results t h a t  a l l  

experimental work devoted t o  finding the quant i ty  

f oriiiula 

D2 by means of the  

which i s  used only i n  experimental work, simultaneously yielded the 

(9.19) 

value of ( p2-p1). 
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10, Second Exaniple of , In tegra t ion  of the  System of' 
Eq-datri.cns of Gas Motion 

L e t  u s  noFi consider the  uniform problem of t'ae s'ieady hea t  

L,idm?er across a gas layer  between two p a r a l l e l  planes with the  ccn - 

3-- ;'- x-s  Ynat there is no mass force, bu t  the  tenrpe?atiwe difference 

cwfomaace  with -the kinetic theo ry  of gases, we will. conr;?der 

t h b t  the viscQst5y p depends only on the tem2erature and is  a known 

f m c t i o n  of the temperature. I n  t h i s  ca,se we m a s t  a.gain 5ntegrate 

the system (9'2) with the  cond2tions (9.3) - (9 , : )  t o  determine t'ie 

integra-tion constantss 

On +,lie basis of the F i r s t  of formulas (gCl7) yhich gives the 

oraey of tke gas vel-ocity v 

t o  cmfl rm t h a t  i n  2 very Sroad clslss cf cases the ve loc i ty  w i l l  be 

i n  the cese coilhidered, it 5.s possible  

a srna.11 quant i ty  ar,d -Jith la rge  jump of tern?era.ture. 

Using *his i n  the second and t h i r d  of equatiops (9.2;, we neglect 

t w m s  having o;.der ;t2 and p3. %en the system (g,2j becomes 

(10.1) 

1Gn first or' e y w  t'icns (10,l) i m s d i a t e l y  i r l tegrs tes  and a:, ser  

sz t i3fac t ion  of the f i rs t  boundary condition i n  (9.3; 

t i l l  Yirst bouncary condition (9.4) yields  

and therefore  

(10.2) 
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The second of equations (10.1) a.lso in tegra tes  and y ie lds  

pRT = C1 (10.3) 

where C 1  is  an integrat ion constant. 

The i n t e g r a l  (10.3) guarantees fulf i l lment  of t he  t h i r d  condition 

of (9.3) and the t h i r d  condition of (9.4). 

Moreover i f  (10.3) i s  taken in to  account then the  t h i r d  of 

equations (10.1) integrates and yields  

(10.4) 

where C, i s  an integrat ion constant. 

Put the ve loc i ty  v from (10.2) i n t o  (10.4). Expression (6.2) 

Tor the  coef f ic ien ts  

(10.4) and, f i na l ly ,  with the a i d  of (10.3) the  densi ty  

eliminated from (10.h). 

D1, D2, Kl and K2 i s  used and subs t i tu ted  i n  

p is  

Then we obtain the very simple equation 

Integrat ing t h i s  equation and sa t i s fy ing  the  second of the 

boundary conditions (9.3) and (9.4) we obtain 

(10.5) 

(10.6) 

The r i g h t  s ide of (10.6) is  a known function of temperature and 

consequently, from (10.6), it i s  possible t o  f i n d  the temperature 

d i s t r ibu t ion  independent of x. 

Using (lO.3), condition (9.5) and transforming from the  in tegra t ion  

vzr iab le  x t o  the  new variable  T with the  a i d  of (10.5), we f ind  C 1  

and obtain a formula f o r  the density 



Moreover, subs t i tu t ing  the  expression f o r  T and p i n  (10.2), 

using (10.3) and the  expression f o r  C, we f i n d  V. Thus 
T2 

v = - 1  a2'u p(T)dT 
2 1P T 
. . T, 

(10.8) 

Finally,  without d i f f icu l ty ,  it i s  possible  t o  obtain an expres- 

s i o n  f o r  the heat  flow 

given by the formula: 

t,. A s  the veloci ty ,  it i s  a constant and 

'Lj. 

L e t  us make some observations on the formulas obtained. 

F i r s t  of a l l ,  l e t  us no+,e the circumstance t h a t  we 

the di f fe ren t  quant i t ies  al, a2, pl, a,nd p2 from these 

may not f i n d  

formulas but  

o n l y  t h e i r  difference. 

and (10.7) pe rn i t  us t o  f i n d  eas i ly  the dependence of v i scos i ty  on 

tenTpera.ture with the  a i d  of the- measured densi ty  or  temperature. 

Further, l e t  us reaark t h a t  formulas (10.6) 
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